Synthesizing Reversible Logic
نویسندگان
چکیده
Zusammenfassung Traditionelle Technologien (z. B. CMOS) stoßen durch die stetig steigende Miniaturisierung sowie das exponentielle Wachstum der Anzahl an Komponenten immer mehr an ihre Grenzen. Daher werden in Zukunft Alternativen, welche traditionelle Computerchips ersetzen oder zumindest ergänzen, benötigt. Reversible Logik mit ihren Anwendungen z. B. im Gebiet der Quantencomputer, des Low-Power Designs, des Optical Computing, des DNA Computing oder in der Nanotechnologie stellt eine solche Alternative dar und hat sich daher in den vergangenen Jahren zu einem intensiv untersuchten Forschungsgebiet entwickelt. Allerdings unterscheidet sich die Synthese von reversiblen Schaltkreisen deutlich von der traditionellen Logiksynthese. So sind insbesondere Verzweigungen (Fanouts) und Rückkopplungen (Feedback durch FlipFlops) nicht möglich, sodass reversible Schaltkreise aus Kaskaden von reversiblen Gattern bestehen. Dies erfordert komplett neue Syntheseansätze. Die vorliegende Arbeit gibt eine Einführung in das Thema und stellt ausgewählte Syntheseverfahren für reversible Logik im Überblick vor. Dabei werden reversible Funktionen und Schaltkreise zuerst eingeführt, wobei insbesondere der Aspekt der Einbettung von irreversiblen Funktionen detailliert betrachtet wird. Anschließendwird beschrieben, wie sich solche Funktionen (gegeben in Form einer Wahrheitstabelle) mit Hilfe von exakten und heuristischen Verfahren synthetisieren lassen. Da die Beschreibung in Form einer Wahrheitstabelle generell nur für kleine Funktionen anwendbar ist, wird schließlich noch ein Syntheseansatz beschrieben, welcher binäre Entscheidungsdiagramme (engl.: BDDs) verwendet und damit die Synthese deutlich größerer Funktionen ermöglicht. Summary Traditional technologies like CMOS more and more start to suffer from the increasing miniaturization and the exponential growth of the number of transistors. Thus, alternatives that replace or at least enhance traditional computer chips are needed in future. Reversible logic, and its applications in domains like quantum computation, low-power design, optical computing, DNA computing, and nanotechnologies, is such a possible alternative and thus has been become an intensely studied topic in the recent years. But synthesis of reversible circuits significantly differs from traditional logic synthesis. In particular, fan-out and feedback are not allowed so that reversible circuits must be cascades of reversible gates. This requires completely new synthesis approaches. This paper provides an introduction into the topic as well as an overview of selected synthesis methods for reversible logic. Thereby, we review reversible functions as well as reversible circuits and, in particular, focus on the embedding of irreversible functions into reversible ones. Then, we describe how such functions (given as a truth table) can be synthesized using exact as well as heuristic approaches. Since only small functions can be synthesized using a truth table as input, afterwards we describe a new method that exploits Binary Decision Diagrams (BDDs) for reversible logic synthesis of significantly larger functions.
منابع مشابه
Reversible Logic Multipliers: Novel Low-cost Parity-Preserving Designs
Reversible logic is one of the new paradigms for power optimization that can be used instead of the current circuits. Moreover, the fault-tolerance capability in the form of error detection or error correction is a vital aspect for current processing systems. In this paper, as the multiplication is an important operation in computing systems, some novel reversible multiplier designs are propose...
متن کاملLogic Synthesis of Ternary Quantum Circuits with Minimal Qutrits
This paper investigates a universal approach of synthesizing arbitrary ternary logic circuits in quantum computation based on the truth table technology. It takes into account of the relationship of classical logic and quantum logic circuits. By adding inputs with constant value and garbage outputs, the classical non-reversible logic can be transformed into reversible logic. Combined with group...
متن کاملAncilla-Quantum Cost Trade-off during Reversible Logic Synthesis using Exclusive Sum-of-Products
Emerging technologies with asymptotic zero power dissipation, such as quantum computing, require the logical operations to be done in a reversible manner. In recent years, the problem of synthesizing Boolean functions in the reversible logic domain has gained significant research attention. The efficiency of the synthesis methods is measured in terms of quantum cost, gate cost, garbage lines, l...
متن کاملEfficient Genetic Based Methods for Optimizing the Reversible and Quantum Logic Circuits
Various synthesis methods have been proposed in the literature for reversible and quantum logic circuits. However, there are few algorithms to optimize an existing circuit with multiple constraints simultaneously. In this paper, some heuristics in genetic algorithms (GA) to optimize a given circuit in terms of quantum cost, number of gates, location of garbage outputs, and delay, are proposed. ...
متن کاملReversible Logic Synthesis Example using a Transformation Based Algorithm
Interest in quantum computing, nanotechnology, and low power consumption circuits is fueling the expanding research in reversible logic synthesis. A reversible function is one that generates a unique output vector for every input vector. Traditional circuits are designed with AND and OR gates that allow fan-outs and loop back results which often results in inefficient energy consumption. In con...
متن کاملEfficient Genetic Based Methods for Optimizing the Reversible and Quantum Logic Circuits
Various synthesis methods have been proposed in the literature for reversible and quantum logic circuits. However, there are few algorithms to optimize an existing circuit with multiple constraints simultaneously. In this paper, some heuristics in genetic algorithms (GA) to optimize a given circuit in terms of quantum cost, number of gates, location of garbage outputs, and delay, are proposed. ...
متن کامل